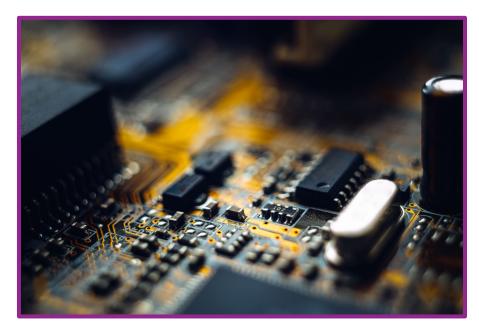


Quantum Computing & Data Security: Hype vs Reality

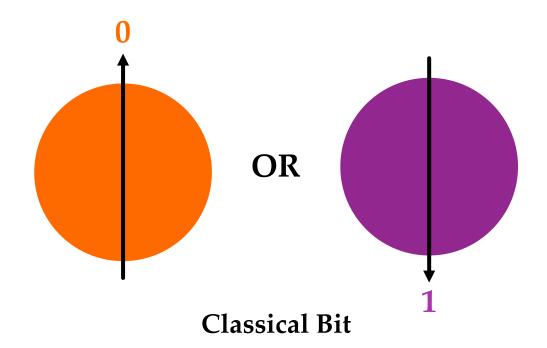


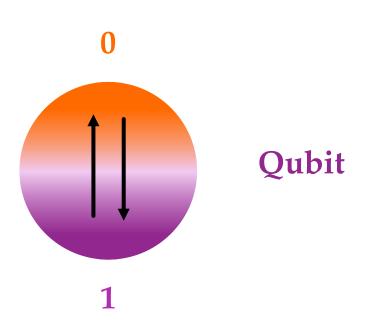
Katanya B. Kuntz, PhD Founder & CEO

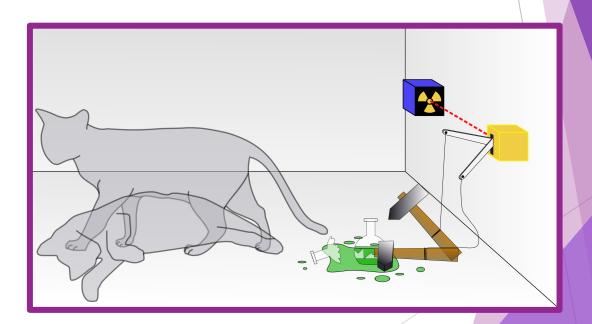
12 November 2025

What is the 2nd Quantum Revolution?

- Wait... What do you mean the **second** Quantum Revolution? When was the 1st revolution?!
- The modern electronics (TVs, computers, cellphones, solar cells, electric cars, LEDs, lasers, ...) we use in every day life were created thanks to the first Quantum Revolution.
- The **Second Quantum Revolution** is using quantum elements/devices (like atoms, photons, superconducting circuits, ...) to **do** the Computing, Sensing, Memory, Communication,

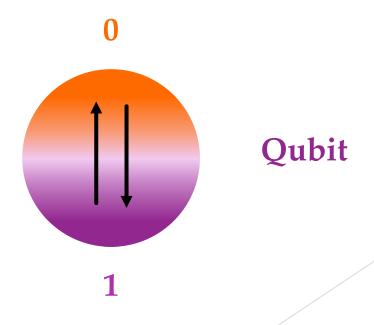



Myth: Al is Quantum...

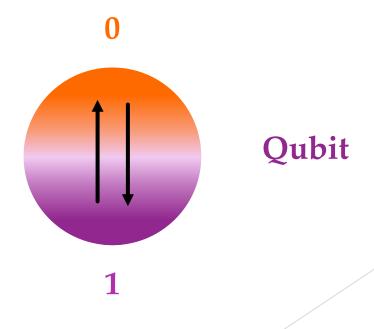

- AI is **NOT** a Quantum Technology!
 - AI is a collection of Classical (traditional) Computers working together
 - Information is stored & processed as Bits (0 or 1)

Myth: Al is Quantum...

- Whereas a **Quantum Computer** uses **Quantum Bits (qubits)** to store & process information
 - Qubits exist in a combination (superposition) state of 0 and 1
 - Qubits can be individual atoms, spin of an electron, particles of light (photons), superconducting circuits, NV-centres, ...

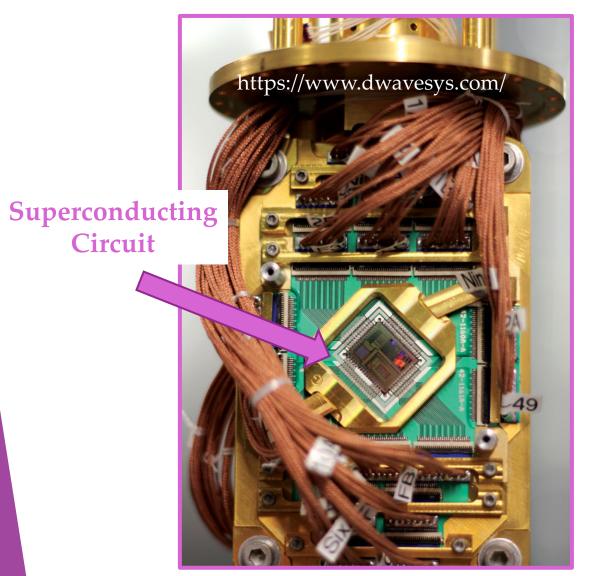


- Special quantum properties allow a **Quantum Computer** to potentially have **significantly more computational power** compared to a classical computer
 - Quantum computers may be able to solve some problems faster and more efficiently (i.e. Shor's algorithm, Grover Search, etc.)



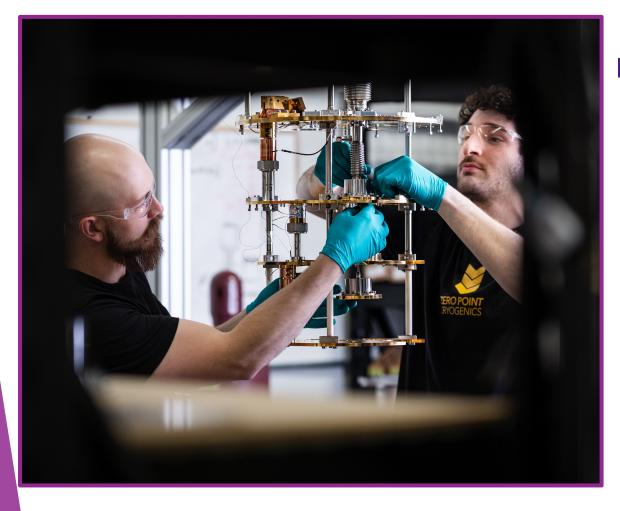
□ The Quantum Threat: Harvest Now, Decrypt Later (HNDL)

- a Quantum Computer could potentially be able to hack some current Public Key encryption methods (RSA, elliptical curve, ...).
- **Quantum-safe encryption**: Post-Quantum Cryptography (PQC), Quantum Key Distribution (QKD)



- Lots of people think this is **Quantum** Computer...
 - But this is actually the *FRIDGE* to run a certain type of Quantum Computer!

Cryogenic Fridge!



Cryogenic Fridge

https://www.forbes.com/sites/karlfreund/2023/06/14/ibm-achieves-breakthrough-in-quantum-computing/

Quantum Computing with Superconducting Qubits

- Cryogenics (ZPC) (Edmonton, Alberta) build cryogenic fridges for Quantum Technologies like
 - Quantum Computers
 - **a** Quantum Memories
 - **d** Quantum Sensors...

https://www.zpcryo.com/

What is a Quantum Sensor?

- Quantum Sensing is when a measurement is done that is enhanced (better sensitivity) due to quantum properties
 - Using **quantum objects** like atoms, photons, electron spin, superconducting circuits, etc., to do the measurement.

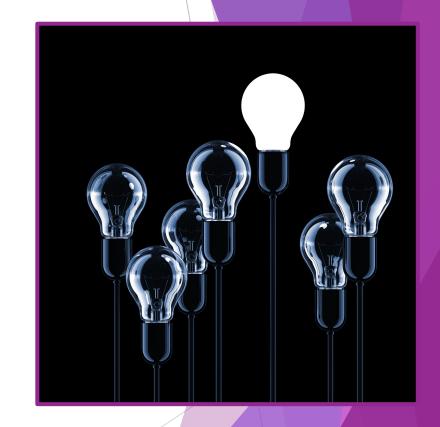
Or exploiting quantum properties like entanglement, superposition, quantum tunneling, ...

What is a Quantum Sensor?

- Quantum Sensing is when a measurement is done that is enhanced (better sensitivity) due to quantum properties
 - Using **quantum objects** like atoms, photons, electron spin, superconducting circuits, etc., to do the measurement.
 - Or exploiting quantum properties like entanglement, superposition, quantum tunneling, ...

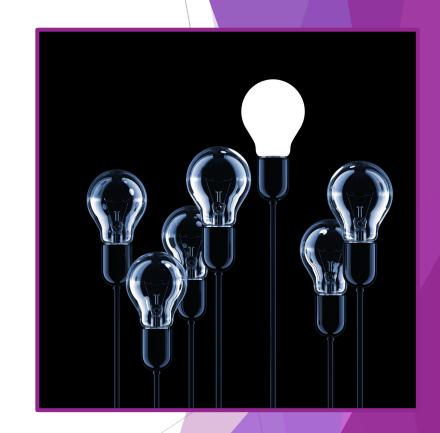
Examples of properties that Quantum Sensors can detect:

- Gravity fields
- Magnetic/Electric fields
- Single photons detectors like an Avalanche Photodiode (APD) or Superconducting Nanowire Single Photon Detector (SNSPD)
- Hidden objects
- Time more precise atomic clocks, GPS
- Temperature
- Movement Accelerometers
- Gases



Quantum Optimization:

Energy Use Cases



- **Quantum Optimization** & **Simulation** have the potential to improve efficiencies in:
- Decentralized energy generation & transmission: Navigating complex dynamic changes in both supply & demand by Load scheduling using dynamic pricing
 - Grid demands: increasing energy use with new data centres, AI infrastructure; changing customer usage with electric vehicles, smart homes.

- **Quantum Optimization** & **Simulation** have the potential to improve efficiencies in:
- Decentralized energy generation & transmission: Navigating complex dynamic changes in both supply & demand by Load scheduling using dynamic pricing
 - **Grid demands**: increasing energy use with new data centres, AI infrastructure; changing customer usage with electric vehicles, smart homes.
 - **Energy sources**: transitioning from traditional power plants (steady/predictable) to wind/solar/hydro (dynamic)
 - Climate change: sudden heat wave or cold snap can significantly affect demand
 - Novel energy transportation & exchange methods: Peer-2-Peer energy trading, microgrids

- It was straightforward to calculate the future cost to generate a megawatt made from traditional fuel sources...
- Now this calculation is **so complex that today's supercomputers struggle** to create accurate pricing models
- Quantum computers can handle larger data sets & more parameters to run complex optimization modelling

- It was straightforward to calculate the future cost to generate a megawatt made from traditional fuel sources...
- Now this calculation is **so complex that today's supercomputers struggle** to create accurate pricing models
- Quantum computers can handle larger data sets & more parameters to run complex optimization modelling
- Organizations like **E.ON** (one of Europe's largest energy companies) have to provide electricity at a fixed price, despite dynamic consumption rates & delivery costs
- Often there's a mismatch between the amount of energy bought in advance & the actual real-time demand, which is traded as **energy derivatives**
 - Pricing those derivatives requires complex simulations

Energy Case Study

- In the **Q-Grid project, Agarios & E.ON** are investigating how **quantum computing** can be applied to problems in the energy section, including
 - **Grid optimization** with multiple local sources & customers
 - **Dynamic Pricing**
 - Microgrid Balancing to maximize efficiency

Energy Case Study

- In the **Q-Grid project, Agarios & E.ON** are investigating how **quantum computing** can be applied to problems in the energy section, including
 - **Grid optimization** with multiple local sources & customers
 - **Dynamic Pricing**
 - **Microgrid Balancing** to maximize efficiency
- **Quantum Solutions:**
 - **Advanced pre-** & post-processing techniques to boost optimization accuracy.
 - Next-gen Novel quantum Pipeline for highly efficient energy distribution.

AQARIOS

Energy Case Study

- Project will systematically **evaluate quantum algorithms against classical optimization** algorithms to look for a "**quantum advantage**."
- **Quantum Results:**
 - **87x speed improvement** over standard quantum/AI approaches.
 - **Future-proof Grid management** with novel quantum methods.

Quantum Key Distribution:

Introduction to Quantum Communication

What is the Quantum Threat?

- A Quantum Computer may be able to solve some problems faster and more efficiently than a classical (traditional) computer.
 - i.e. Shor's algorithm, Grover Search, etc.
- Special quantum properties allow a Quantum Computer to *potentially* be able to hack some current Public Key encryption methods (RSA, elliptical curve, ...).

However, *quantum computers aren't better at everything...* Some operations are harder with qubits compared to classical bits (i.e. **Post-Quantum Cryptography** (**PQC**)).

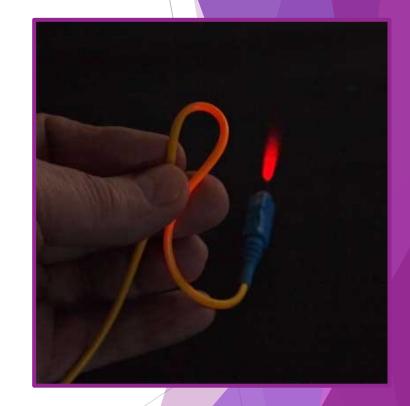
© 2025 Qubo Consulting Corp. All rights reserved. Confidential for User only.

What is the Quantum Solution?

- **Quantum Key Distribution (QKD)** is a quantum solution to the encryption threat.
- QKD is the *real-time generation* of an encryption key between two parties, usually called **Alice** (sender) and **Bob** (receiver), using particles of light (**single photons**).

What is the Quantum Solution?

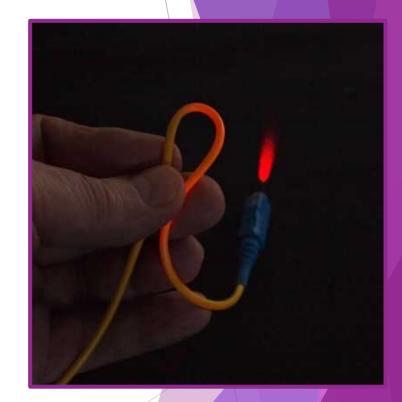
- **Quantum Key Distribution (QKD)** is a quantum solution to the encryption threat.
- QKD is the *real-time generation* of an encryption key between two parties, usually called **Alice** (sender) and **Bob** (receiver), using particles of light (**single photons**).
- Once Alice & Bob have generated their **shared secret key** using single photons, they can use the key in **"one time pad" encryption** to secure their message (**theoretically 100% secure**).
- The security of QKD is not based on solving hard math problems (like factorizing large numbers). Rather it's based on **Physical Processes** that are not vulnerable to Quantum Computers!



What is the Quantum Internet?

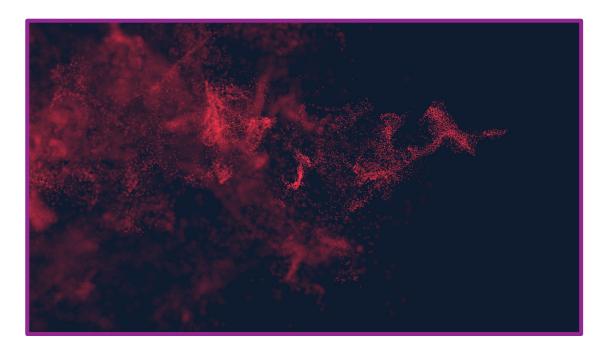
Quantum Internet: Global quantum network connecting quantumenabled devices, such as quantum sensors, quantum computers, quantum communication systems, etc.

- We can't just turn up the power or use classical amplifiers to increase the distance like we do for the classical internet.
 - A small percentage of light leaks out of the fibre core into the cladding, & is lost to the environment (average 0.3dB/km at 1550nm)
 - **No Cloning Theorem'** shows it's fundamentally not allowed by nature to make a perfect copy (amplify) of a quantum state.



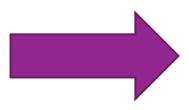
What is the Quantum Internet?

Quantum Internet: Global quantum network connecting quantumenabled devices, such as quantum sensors, quantum computers, quantum communication systems, etc.


- We can't just turn up the power or use classical amplifiers to increase the distance like we do for the classical internet.
 - A small percentage of light leaks out of the fibre core into the cladding, & is lost to the environment (average 0.3dB/km at 1550nm)
 - **'No Cloning Theorem'** shows it's fundamentally not allowed by nature to make a perfect copy (amplify) of a quantum state.
- Solutions to extend the distance: **Quantum Repeaters/Memories**, **Non-Linear Amplifiers**, ...
 - These solutions require operations like *Entanglement Swapping* to transfer quantum information between carrier photons.

Quantum Key Distribution

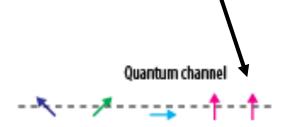
- Security of Quantum Key Distribution (QKD) is guaranteed by quantum properties:
 - **Q**uantum information can be transferred but *never* copied (**No Cloning Theorem**).
 - **Measurement disturbs the System or State:** you know if an Eavesdropper is in the quantum channel because they will create errors.
 - A single photon (particle of light) cannot be 'split'; it is an indivisible bundle of energy that stores 1 qubit of information (or more if multiplexed state).


Quantum Key Distribution (QKD)

One Time Pad Encryption: 100% secure if Encryption Key only used once!

...01100010101111001010...

Message	Key	$\mathbf{M} \oplus \mathbf{K} = \mathbf{K}_{Secure}$
0	0	0
0	1	1
1	0	1
1	1	0



BB84 Protocol (Charles Bennett & Gilles Brassard)

Each arrow represents a different **Photon** travelling from Alice to Bob

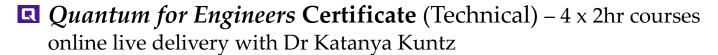
BOB

We want to MAKE & SEND an encryption key using LIGHT!

011000101011111001010

- **Quantum Key Distribution**: Real time generation of Encryption Key between Alice and Bob!
- Each Photon carries 1 Qubit of Information!

How to get started? Quantum Training!


- Qubo Consulting has partnered with the Northern Alberta Institute of Technology (NAIT) to offer two Quantum Certificate programs!

 Learn more!
 - Next online cohort starts 18 November 2025! More sessions in Spring 2026

- **©** CCTM471: Quantum Computing Use Cases
- **©** CCTM472: Data Security & Quantum Communication
- **©** CCTM473: **Quantum Sensing Use Cases**

- **©** CCTM475: **Quantum Intro for Engineers**
- **©** CCTM477: Intro to Quantum Computing Platforms
- **©** CCTM478: Intro to Quantum Sensing Platforms
- **©** CCTM479: Intro to Quantum Communication Platforms

www.quboquantum.com

My Journey – 1st Optics Experiment!

I made a **lightsaber** for my undergrad physics thesis project at Uof Calgary...

